Stock Market Series Analysis Using Self-Organizing Maps

نویسندگان

  • Diogo Matos
  • Nuno C. Marques
  • Margarida G. M. S. Cardoso
چکیده

In this work a new clustering technique is implemented and tested. The proposed approach is based on the application of a SOM (self-organizing map) neural network and provides means to cluster U-MAT aggregated data. It relies on a flooding algorithm operating on the U-MAT and resorts to the Calinski and Harabask index to assess the depth of flooding, providing an adequate number of clusters. The method is tuned for the analysis of stock market series. Results obtained are promising although limited in scope. keywords: financial markets, SOM, clustering, U-Matrix, flooding, neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Clustering with Self-organizing Maps and an Application to Financial Time-series for Portfolio Selection

The portfolio selection is an important technique to decrease the risk in stock investment. In portfolio selection, the investor’s property is distributed among a set of stocks in order to minimize the financial risk in market downturns. With this in mind, and aiming to develop a tool to assist the investor in finding balanced portoflios, we achieved a generic method for feature clustering with...

متن کامل

Green Product Consumers Segmentation Using Self-Organizing Maps in Iran

This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...

متن کامل

Neural Pattern Recognition with Self-organizing Maps for Efficient Processing of Forex Market Data Streams

The paper addresses the problem of using Japanese candlestick methodology to analyze stock or forex market data by neural nets. Self organizing maps are presented as tools for providing maps of known candlestick formations. They may be used to visualize these patterns, and as inputs for more complex trading decision systems. In that case their role is preprocessing, coding and pre-classificatio...

متن کامل

Visualizing Stock Market Data with Self-Organizing Map

Finding useful patterns in stock market data requires tremendous analytical skills and effort. To help investors manage their portfolios, we developed a tool for clustering and visualizing stock market data using an unsupervised learning algorithm called Self-Organizing Map. Our tool is intended to assist users in identifying groups of stocks that have similar price movement patterns over a per...

متن کامل

Application of self-organizing maps to clustering of high-frequency Financial data

This paper analyzes the clustering of trades on the Australian Stock Exchange (ASX) with respect to the trade direction variable. The ASX is a limit order market operating an electronic limit order book. The order book consists of buy limit orders (bids) and sell limit orders (asks). A trade takes place if a new order arrives which matches an existing order in the limit order book. If the match...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015